This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

Synthesis, spectral studies of copper(II)tetrathiocyanato dithallate(I) complexes with some acylhydrazones and their antimicrobial activity Vinod P. Singh^a; Archana Singh^a

^a Faculty of Science, Department of Chemistry, Banaras Hindu University, Varanasi-221005, India

To cite this Article Singh, Vinod P. and Singh, Archana(2008) 'Synthesis, spectral studies of copper(II)tetrathiocyanato dithallate(I) complexes with some acylhydrazones and their antimicrobial activity', Journal of Coordination Chemistry, 61: 17, 2767 – 2780

To link to this Article: DOI: 10.1080/00958970801975075 URL: http://dx.doi.org/10.1080/00958970801975075

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Synthesis, spectral studies of copper(II)tetrathiocyanato dithallate(I) complexes with some acylhydrazones and their antimicrobial activity

VINOD P. SINGH* and ARCHANA SINGH

Faculty of Science, Department of Chemistry, Banaras Hindu University, Varanasi-221005, India

(Received 1 July 2007; in final form 18 August 2007)

Heterobimetallic complexes of Cu[Tl(SCN)₂]₂·L (where L = acetophenone benzoylhydrazone(abh), acetophenone isonicotinoyl hydrazone(ainh), acetophenone salicyloylhydrazone(ash), acetophenone anthraniloyl hydrazone(aah), *p*-hydroxy acetophenone benzoylhydrazone (phabh), *p*-hydroxy acetophenone isonicotinoyl hydrazone (phainh), *p*-hydroxy acetophenone salicyloylhydrazone(phash) and *p*-hydroxy acetophenone anthraniloyl hydrazone(phash) were synthesized and characterized. Electronic spectra and μ_{eff} values suggest a distorted octahedral environment around copper(II). SCN groups bridge between two metal centers and the ligands are coordinated through >C=O and >C=N- groups. Thermal studies (TGA and DTA) on Cu[Tl(SCN)₂]₂ · ainh indicate multi step decomposition of both endothermic and exothermic nature. ESR data show axial spectra for all the complexes or correspond to orthorhombic crystal lattice. The complexes show significant antifungal activity against *Rizoctonia* sp. and *Stemphylium* sp. and moderate antibacterial activity against *Clostridium* sp. and *Pseudomonas* sp. The activity increases at higher concentration of the compound.

Keywords: Copper(II); Thallium(I) thiocyanate complexes; Acylhydrazones; Antifungal; Antibacterial activity; Characterization

1. Introduction

Thallium(I) compounds show the highest activity against the ascitic form of the Walker-256 carcinosarcoma [1]. [Tl(C₅H₇N₃O)NO₃] and [(nitrato)(1-methylcystosin)thallium(I)] have been considered as model compounds for the interaction of thallium(I) with nucleobases [2]. The thallium(I) ion resembles alkali metal ions or Ag(I) and may replace the K⁺ in certain enzymes for which it has potential as a probe. Thallium(I) is a soft metal ion and prefers highly polarizable sulfur donor ligands to nitrogen and oxygen donor ligands for bonding [3]. However, copper(II) is a borderline metal ion capable of binding with either end of a SCN group. Infrared spectral studies on Co[Tl(SCN)₂]₂

^{*}Corresponding author. Email: singvp@yahoo.co.in

indicate that the sulfur is linked to Tl(I) and the NCS–Tl–SCN group is linear [3]. Several Tl(I) compounds, namely Tl(I) alkoxides and acetylacetonates, tend to be polymeric [4, 5].

In continuation of our earlier work on mixed metal complexes of Cu(II) and Tl(I) [6] and our interest in the biological applications of such complexes, we have synthesized and characterized a number of heterobimetallic complexes with some new acylhydrazone ligands using Cu[Tl(SCN)₂]₂ as a Lewis acid. The ligands and their complexes have also been screened for antifungal and antibacterial activities.

2. Experimental

2.1. Materials

Metal salts and other chemicals used were of AnalaR (BDH) or equivalent grade. Benzoic acid hydrazide ($C_6H_5CONHNH_2$), salicylic acid hydrazide (HOC_6H_4 CONHNH₂) and anthranilic acid hydrazide ($H_2NC_6H_4CONHNH_2$) were prepared by the reported methods [7]. Isonicotinic acid hydrazide ($NC_5H_4CONHNH_2$) was obtained from S.D. fine chemicals, Mumbai, whereas thallous nitrate was obtained from Fluka.

2.2. Preparation of ligands

2.2.1. (A) Acetophenone acylhydrazones. Acetophenone benzoyl hydrazone (abh), $C_6H_5C(CH_3)=NNHCOC_6H_5$; acetophenone isonicotinoyl hydrazone (ainh), $C_6H_5C(CH_3)=NNHCOC_5H_4N$; acetophenone salicyloylhydrazone (ash), $C_6H_5C(CH_3)=NNHCOC_6H_4(OH)$ and acetophenone anthraniloylhydrazone (aah), $C_6H_5C(CH_3)=NNHCOC_6H_4(NH_2)$ were synthesized by reacting their corresponding acid hydrazides with acetophenone in 1:1 molar ratio in 50 mL ethanol. The reaction mixture was refluxed at 60°C for 2–4h and then allowed to cool in a beaker and the product collected by suction on a Buckner funnel. The abh and aah ligands were recrystallized from hot benzene while ash and ainh were recrystallized from hot ethanol and dried in a desiccator over anhydrous CaCl₂.

2.2.2. (B) p-hydroxy acetophenone acylhydrazones. *p*-Hydroxy acetophenone benzoylhydrazone (phabh), $C_6H_4(OH)C(CH_3)=NNHCOC_6H_5$; *p*-hydroxy acetophenone isonicotinoyl hydrazone (phainh), $C_6H_4(OH)C(CH_3)=NNHCOC_5H_4N$; *p*-hydroxy acetophenone salicyloylhydrazone (phash), $C_6H_4(OH)C(CH_3)=NNHCOC_6H_4(OH)$; *p*-hydroxy acetophenone anthraniloylhydrazone (phaah), $C_6H_4(OH)C(CH_3)=$ NNHCOC₆H₄(NH₂) were synthesized by reacting their corresponding acid hydrazide with *p*-hydroxy acetophenone in 1:1 molar ratio in 50 mL ethanol. The reactants were refluxed for 4–6 h in a round bottom flask at 60°C. The crude product was filtered after cooling, recrystallized from hot ethanol and dried in a desiccator. The ligands were characterized by their melting points, CHN analyses (table 1) and IR spectra (table 5).

			Fo	ound (Calcd)	%	
Ligands (Color)	Empirical formula (Formula wt.)	Melting point (°C)	С	Н	Ν	Yield (%)
Abh (White)	C ₁₅ H ₁₄ N ₂ O (238)	145	75.80 (75.63)	5.92 (5.88)	11.66 (11.76)	75
Ainh (White)	$C_{14}H_{13}N_{3}O(239)$	162	70.10 (70.29)	5.50 (5.44)	17.42 (17.57)	70
Ash (White)	$C_{15}H_{14}N_2O_2$ (254)	205	70.72 (70.86)	5.61 (5.51)	10.95 (11.02)	80
Aah (Cream yellow)	C ₁₅ H ₁₅ N ₃ O (253)	175	70.92 (71.15)	5.81 (5.93)	16.41 (16.60)	70
Phabh (Light yellow)	$C_{15}H_{14}N_2O_2$ (254)	210	70.70 (70.86)	5.67 (5.51)	10.92 (11.02)	80
Phainh (Light yellow)	$C_{14}H_{13}N_3O_2$ (255)	260	65.72 (65.88)	5.18 (5.10)	16.38 (16.47)	75
Phash (Light yellow)	$C_{15}H_{14}N_2O_3$ (270)	240	66.45 (66.67)	5.26 (5.18)	10.32 (10.37)	85
Phaah (Light yellow)	$C_{15}H_{15}N_3O_2$ (269)	225	66.70 (66.91)	5.48 (5.57)	15.41 (15.61)	75

Table 1. Analytical data of the ligands.

2.3. Preparation of metal thiocyanates

 $Cu(NCS)_2$ was prepared by mixing aqueous solutions of $CuSO_4 \cdot 5H_2O$, (10 mmol, 2.50 g) with an aqueous solution of NH₄SCN (20 mmol, 1.52 g) and stirring for 15 minutes on a magnetic stirrer at room temperature (25°C). Black Cu(NCS)₂ was filtered immediately and dried in a desiccator at room temperature [8].

Thallium(I) thiocyanate was prepared by dissolving 10 mmol (2.66g) of TlNO₃ in 50 mL water. The solution was treated with 10 mmol (0.76g) NH₄SCN dissolved in 25 mL of water with constant stirring. White TlSCN, thus formed, was filtered and washed with ice cold water followed by absolute ethanol and finally with diethyl ether.

2.4. Synthesis of Cu[Tl(SCN)₂]₂

The Lewis acid $Cu[Tl(SCN)_2]_2$ was prepared by the reported procedure [6] reacting $Cu(NCS)_2$ (10 mmol, 1.80 g) with TlSCN (20 mmol, 5.24 g) in a round bottom flask containing 50 mL dioxane and using an anhydrous $CaCl_2$ guard tube. The reaction mixture was stirred for 75 h on a magnetic stirrer at room temperature to complete the reaction. The violet complex was filtered, washed with dioxane and dried in a desiccator at room temperature.

2.5. Synthesis of $Cu[Tl(SCN)_2]_2 \cdot L$

The Cu[Tl(SCN)₂]₂ (5 mmol, 3.51 g) was suspended in 50 mL hexane and reacted separately with 5 mmol solution of each of the ligands viz. abh (1.19 g), ainh (1.20 g), ash (1.27 g), aah (1.26 g), phabh (1.27 g), phainh (1.28 g), phash (1.35 g) and phaah (1.35 g) dissolved in 50 mL dioxane in a round bottom flask. The reaction mixture was well stirred on a magnetic stirrer at room temperature for ~48 h under anhydrous conditions until a visible color change of the product was observed. The products thus formed were filtered, washed with dioxane followed by hexane and dried in a desiccator over anhydrous calcium chloride at room temperature.

2.6. Analyses and physico-chemical studies

The thallium content was determined gravimetrically as TISCN by treating the complexes with warm ($\sim 60^{\circ}$ C) 0.2N HCl. After cooling the solution to $\sim 15^{\circ}$ C,

TISCN deposited, was filtered, washed with cold water followed by ethanol, dried at 110° C and then weighed as thallium(I) thiocyanate. For determination of copper content, the above filtrate was evaporated to dryness using conc. HNO₃ followed by conc. H₂SO₄ to destroy the organic content. Copper(II) was treated with sufficient H_2SO_3 to reduce it to copper(I) and then estimated gravimetrically as copper(I) thiocyanate [8]. Carbon, hydrogen and nitrogen contents were determined by using a Elemental Vario EL III Carlo Erba 1108 model microanalyzer. The molar conductance of 10⁻³M solutions of the complexes in DMSO was measured at room temperature on a Systronic Conductivity meter model-306. Room temperature magnetic susceptibilities were determined on a Faraday balance using Co[Hg(SCN)₄] as calibrant and corrected for diamagnetism [9]. Thermal studies (TGA and DTA) were carried out on a Perkin-Elmer Thermal Analyser between 25-800°C. IR spectra were recorded in KBr on a Vector-22 spectrophotometer. Electronic spectra were recorded in DMSO solution on a Perkin-Elmer Lambda-2 spectrophotometer. The X-band ESR spectra of the complexes were recorded on a EMX 1444 EPR spectrometer at room temperature (298 K) in the solid state using DPPH as g marker (g = 2.0023). Powder X-ray diffraction patterns of a few complexes were recorded on an Iso Debye Flex 2002 apparatus using Cu-Kα radiations. The analytical and physico chemical data are given in tables 1-7.

3. Antimicrobial activity

3.1. Antifungal activity

The ligands, $Cu[Tl(SCN)_2]_2$ and their complexes were screened for antifungal activity against *Rizoctonia* sp. and *Stemphylium* sp. These species were isolated from the infected organs of the host plants on potato dextrose agar (potato 250 g + dextrose 20 g + agar 20 g) medium. The cultures of the fungi were purified by single spore isolation.

Solutions 0.5, 1.0 and 1.5 mg mL^{-1} of each compound in DMSO were prepared for testing against spore germination. A drop of the solution of each concentration was kept separately on glass slides. The conidia, fungal reproducing spores (approx. 200) lifted with the help of an inoculating needle, were mixed in every drop of each compound separately. Each treatment was replicated thrice and a parallel DMSO control set was run concurrently on separate glass slides. All the slides were incubated in humid chambers at $25 \pm 2^{\circ}$ C for 24 h. Each slide was observed under the microscope for spore germination and percent germination was calculated.

3.2. Antibacterial activity

The antibacterial activity of the Lewis acid, ligands and their complexes was studied against *Clostridium* sp. (Gram +ve) and *Pseudomonas* sp. (Gram -ve) bacteria. Each compound was dissolved in DMSO and solutions of 2 mg mL^{-1} and 1 mg mL^{-1} were prepared separately. Paper discs of Whatman filter paper (No. 42) of uniform diameter (2 cm) were cut and sterilized in an autoclave. The paper discs soaked in the desired concentration of the complex solutions were placed aseptically in Petri dishes

2011
January
23
09:50
At:
Downloaded

complexes.
of the
data
Analytical
ci
Table

				Η	⁷ ound (Calcd)%	. 0			
Complex (Color)	Empirical formula (Formula wt.)	Decomposition temp. (°C)	IT	Cu	C	Η	z	Yield (%)	$(\Omega^{-1} \mathrm{cm}^2 \mathrm{mol}^{-1})$ in DMSO
Cu[Tl(SCN) ₂] ₂ (Violet) Cu[Tl(SCN) ₂] ₂ · abh	$\begin{array}{c} C_4 N_4 S_4 Cu Tl_2 \ (703.5) \\ C_{19} H_{14} N_6 S_4 O Cu Tl_2 \ (941.5) \end{array}$	264 207	57.80 (58.00) 43.10 (43.33)	9.00 (9.02) 6.62 (6.74)	6.76 (6.82) 24.08 (24.22)	_ 1.52 (1.48)	7.88 (7.96) 8.74 (8.92)	80 70	9.6
CulTI(SCN) ₂] ₂ · ainh $(1 \text{ i.s.} + \frac{1}{2} \text{ or } \frac{1}{$	$C_{18}H_{13}N_7S_4OCuTl_2$ (942.5)	182	43.15 (43.29)	6.60 (6.73)	22.82 (22.92)	1.44 (1.38)	10.33 (10.40)	75	11.5
Cu[Tl(SCN) ₂] ₂ · ash $Cu[Tl(SCN)_{2}]_{2}$ · ash	$C_{19}H_{14}N_6S_4O_2CuTl_2$ (957.5)	165	42.50 (42.61)	6.55 (6.63)	23.66 (23.81)	1.54 (1.46)	8.69 (8.77)	82	10.1
$Cu[Tl(SCN)_2]_2 \cdot aah$	$C_{19}H_{15}N_7S_4OCuTl_2$ (956.5)	178	42.55 (42.65)	6.58 (6.64)	23.71 (23.83)	1.51 (1.57)	10.11 (10.24)	75	12.5
$Cu[T (SCN)_2]_2 \cdot phabh$	$C_{19}H_{14}N_6S_4O_2CuTl_2$ (957.5)	190	42.50 (42.61)	6.48 (6.63)	23.69 (23.81)	1.40 (1.46)	8.65 (8.77)	78	11.2
Cu[Tl(SCN) ₂] ₂ ·phainh	$C_{18}H_{13}N_7S_4O_2CuTl_2$ (958.5)	219	42.60 (42.57)	6.60 (6.62)	22.44 (22.53)	1.32 (1.35)	10.30 (10.22)	70	14.5
Cu[Tl(SCN) ₂] ₂ ·phash	C ₁₉ H ₁₄ N ₆ S ₄ O ₃ CuTl ₂ (973.5)	160	41.70 (41.91)	6.45 (6.52)	23.38 (23.42)	1.41 (1.44)	8.52 (8.63)	80	10.4
(Tenow) Cu[Tl(SCN) ₂] ₂ .phaah (Light vellow)	$C_{19}H_{15}N_7S_4O_2CuTl_2$ (972.5)	171	41.75 (41.95)	6.50 (6.53)	23.36 (23.44)	1.48 (1.54)	9.97 (10.08)	72	11.6
Trigue youve /									

Tetrathiocyanato dithallate

		λ_{max}	(cm^{-1})
Complex	$\mu_{\rm eff}$ (B.M.)	$^{2}B_{1g} \rightarrow ^{2}B_{2g}$	$^{2}B_{1g} \rightarrow ^{2}A_{1g}$
Cu[Tl(SCN) ₂] ₂	1.70		16390
$Cu[Tl(SCN)_2]_2 \cdot abh$	1.82	11235	14700
$Cu[Tl(SCN)_2]_2 \cdot ainh$	1.85	10640	13790
$Cu[Tl(SCN)_2]_2 \cdot ash$	1.74	11100	14925
$Cu[Tl(SCN)_2]_2 \cdot aah$	1.80	10870	14490
$Cu[Tl(SCN)_2]_2 \cdot phabh$	1.86	10750	15150
$Cu[Tl(SCN)_2]_2 \cdot phainh$	1.75	11300	14285
Cu[Tl(SCN) ₂] ₂ · phash	1.83	11560	15870
$Cu[Tl(SCN)_2]_2 \cdot phaah$	1.78	11360	14815

Table 3. Magnetic moments and electronic spectral bands.

Table 4. ESR parameters of the complexes in solid state at room temperature (298 K).

Complex	A_{\parallel} (G)	A_{\perp} (G)	$A_{\rm av}$ (G)	g_{\parallel}	g_{\perp}	g_{av}	G
Cu[Tl(SCN)2]2 · ainh	136	47	76.6	2.2702	2.0561	2.1275	4.8164
$Cu[Tl(SCN)_2]_2 \cdot ash$	126	77	93.3	2.2957	2.0436	2.1143	6.7821
Cu[Tl(SCN) ₂] ₂ · aah	145	47	79.4	2.2736	2.0529	2.1264	5.1720
Cu[Tl(SCN) ₂] ₂ · phainh	133	50	77.6	2.2800	2.0548	2.1299	5.1095
$Cu[Tl(SCN)_2]_2 \cdot phash$	176	69	104.4	2.3082	2.0454	2.1330	6.7885

Table 5. IR spectral data and assignment of important bands.

		A • 1 T					SCN ban	ds
Compound	v(NH+OH)	Amide I $\nu(C=O)$	$\nu(C=N)$	II	III	ν(N–N)	v(CN)	v(CS)
Abh	3435b, 3280b, 3189s	1650s	1620s	1540s	1378s	975m		
Ainh	3380w, 3260b, 3180b	1665s	1630s	1560m	1376s	980s		
Ash	3410w, 3275m	1655s	1633m	1548m	1386s	990w		
Aah	3469s, 3356m, 3189b	1648m	1631s	1575s	1377m	980m		
Phabh	3526s, 3248b, 3399w	1640m	1610m	1573s	1370m	988m		
Phainh	3550w, 3285s, 3436b	1653s	1615s	1567m	1384s	979m		
Phash	3390w, 8269w	1660w	1633m	1539s	1367s	976m		
Phaah	3468s, 3355m, 3136b	1645s	1625s	1545s	1371s	988m		
Cu[Tl(SCN)2]2 · abh	3440b, 3280b, 3190m	1632m	1605s	1527s	1383s	1000w	2155s, 2060s	752w
Cu[Tl(SCN) ₂] ₂ · ainh	3554b, 3445b, 3190m	1643s	1610m	1550s	1380s	1005s	2150w, 2096s	764s
Cu[Tl(SCN)2]2 · ash	3532b, 3427b, 3280w	1635m	1602s	1537s	1395m	1010w	2156s, 2050s	747s
Cu[Tl(SCN)2]2 · aah	3465w, 3380b, 3187m	1632s	1615s	1558m	1385m	1005w	2162s, 2070s	755w
Cu[Tl(SCN) ₂] ₂ · phabh	3550b, 3400b, 3257b	1627m	1600s	1555m	1382m	1002w	2152s, 2065s	740m
Cu[Tl(SCN)2]2 · phainh	3560b, 3442m, 3287b	1640s	1603s	1545s	1386s	1005s	2160w, 2082s	745s
Cu[Tl(SCN) ₂] ₂ · phash	3557b, 3455b, 3280w	1642m	1606m	1516	1382m	990w	2160s, 2077s	752w
$Cu[Tl(SCN)_2]_2 \cdot phaah$	3470b, 3360m, 3140b	1630s	1615s	1528m	1380s	1007w	2158s, 2072s	760w

s = strong, b = broad, m = medium, w = weak.

containing nutrient agar media (agar 20 g + beef extract 3 g + peptone 5 g) seeded with *Clostridium* and *Pseudomonas* sp. bacteria separately. The Petri dishes were incubated at 37° C and the inhibition zones were recorded after 24 h of incubation. Each treatment was replicated nine times.

		Proposed decomposition	% Loss	s of wt.	Energy	
S.No.	$Temp \ (^{\circ}C)$	pattern	Obs.	Calcd	change	Remarks
1.	25-182	$Cu[Tl(SCN)_2]_2 \cdot ainh$	0.00	0.00	Endothermic	No decomposition
		¥				
2.	182-245	$Cu(SCN)_2 \cdot ainh + Tl_2S$	9.00	8.9	Endothermic	TISCN decomposed
		¥				
3.	245-460	$Cu(SCN)_2 + v Tl_2 S$	34.00	34.27	Endothermic	Loss of organic ligand ainh
		¥				
4.	460–750	$CuS + Tl_2S$	43.40	43.18	Endothermic	$Cu(SCN)_2$ decomposed

Table 6. Thermal decomposition of Cu[Tl(SCN)₂]₂ · ainh.

The antibacterial activity of a common standard antibiotic Ampicilln was also recorded using the same procedure as above at the same concentrations and solvent. The % Activity Index for the complex was calculated by the formula:

% Activity zone =
$$\frac{\text{Zone of inhibition by test compound (diameter)}}{\text{Zone of inhibition by standard (diameter)}} \times 100$$

4. Results and discussion

The analytical data (table 2) show that $Cu(NCS)_2$ and TISCN react in 1:2 molar ratio in dioxane resulting in $Cu[Tl(SCN)_2]_2$ which further reacts with the acylhydrazone (RCONHN=C<) bases to form $Cu[Tl(SCN)_2]_2 \cdot L$ complexes.

The complexes vary from light green to yellow to light yellow to yellowish green, in contrast to the Lewis acid which is violet. They are generally insoluble in water, benzene, ethanol, chloroform, carbon tetrachloride, ethylene dichloride and ether but are fairly soluble in DMF and DMSO. They decompose in water into Cu(NCS)₂ and TISCN. On heating the Lewis acid decomposes at 264°C, whereas its complexes decompose in the range 160–219°C. All the metal complexes show very low molar conductance values for 10^{-3} M solutions in DMSO at room temperature (between 9.6–14.5 Ω^{-1} cm² mol⁻¹) indicating that they are non electrolytes [10].

4.1. Magnetic moments and electronic spectra

In Cu(II) complexes, μ_{eff} values are generally between 1.75–2.20 B.M [11], higher than the spin only μ_{eff} value of 1.73 B.M. corresponding to one unpaired electron. In tetrahedral Cu(II) complexes, the high μ_{eff} values are due to an orbital contribution while in octahedral complexes to mixing of excited T term into the E ground term [12]. The μ_{eff} values in this study have been observed between 1.70–1.86 B.M, indicating a distorted octahedral geometry around Cu(II). A slightly low magnetic moment value (1.70 B.M.) for Cu[Tl(SCN)₂]₂ may be due to spin-spin interaction between copper ions [11] in a polymeric structure.

D 1	20	T. c te	1 (Å)	0 (1/2)	0	111
Powder pattern	20	Intensity	<i>a</i> (A)	$Q_{\rm obs}$ (1/ d)	Q_{Calcd}	nKl
$Cu[Tl(SCN)_2]_2 \cdot ain$	ih	(0.20	4 7 4 2 7	0.0444	0.0444	100
	18./1	68.30	4./43/	0.0444	0.0444	100
2	19.55	56.76	4.5404	0.0485	0.0485	010
3	21.44	42.41	4.1441	0.0582	0.0582	001
4	26.42	75.83	3.3739	0.0878	0.0929	110
5	28.56	44.41	3.1259	0.1023	0.1026	101
6	30.20	99.35	2.9596	0.1142	0.1067	011
7	35.62	62.10	2.5205	0.1574	0.1511	111
8	37.71	39.49	2.3855	0.1757	0.1776	200
9	42.24	45.98	2.1397	0.2184	0.2261	210
10	44.82	39.77	2.0220	0.2446	0.2384	120
11	46.96	31.04	1.9348	0.2671	0.2522	021
12	47.26	31.20	1.9233	0.2703	0.2772	102
13	48.01	36.63	1.8951	0.2784	0.2813	012
14	48.85	49.15	1.8643	0.2877	0.2843	211
15	51.84	33.47	1.7637	0.3215	0.3257	112
16	56.41	32.76	1.6310	0.3759	0.3996	300
17	59.95	32.18	1.5431	0.4199	0.4298	221
18	61.29	37.84	1.5125	0.4371	0.4365	030
19	62.33	35.77	1.4896	0.4507	0.4481	310
20	62.98	37.78	1.4758	0.4591	0.4589	212
21	65.72	38.09	1.4209	0.4953	0.4947	031
22	70.64	31.31	1.3334	0.5624	0.5682	103
23	78.01	33.59	1.2249	0.6665	0.6693	032
$Cu[Tl(SCN)_2]_2 \cdot pha$	ash					
1	17.85	29.85	5.0155	0.0397	0.0397	100
2	18.58	53.11	4.7760	0.0438	0.0438	010
3	19.47	53.26	4.5586	0.0481	0.0481	001
4	26.33	53.97	3.3848	0.0873	0.0878	101
5	28.42	36.15	3.1408	0.1014	0.0919	011
6	32.00	100.00	2.7972	0.1278	0.1316	111
7	35.62	58.07	2.5203	0.1574	0.1588	200
8	37.51	33.23	2.3976	0.1739	0.1752	020
9	40.19	24.92	2.2435	0.1987	0.1924	002
10	40.74	24.66	2.2147	0.2039	0.2026	210
11	42.18	39.32	2.1423	0.2179	0.2149	120
12	43.97	21.06	2.0592	0.2358	0.2321	102
13	44.77	29.33	2.0244	0.2440	0.2405	012
14	46.80	28.81	1.9410	0.2654	0.2630	121
15	47.90	34.55	1.8992	0.2772	0.2759	112
16	50.18	26.77	1.8179	0.3026	0.3092	211
17	55.35	26.38	1.6598	0.3630	0.3573	300
18	57.19	23.65	1 6107	0.3854	0 3942	030
19	61.12	27.57	1 5163	0 4349	0 4339	130
20	61.61	29.08	1.5053	0.4413	0.4423	031
21	63.00	26.06	1 4753	0.4594	0.4492	311
21	63 70	22.00	1.4609	0.4685	0.4726	103
23	65 74	29.31	1 4205	0 4956	0.5164	113
24	69 37	20.75	1 3548	0 5448	0 5497	302
25	70.41	20.75	1 3372	0 5592	0.5530	230
26	74 33	20.45	1 2760	0.6142	0.6081	023
20	75 43	20.03	1 2602	0.6207	0.6263	132
<i>2 1</i>	15.45	22.42	1.2002	0.0297	0.0205	132

Table 7. Observed and calculated Q and hkl values.

Figure 1. ESR spectra of the complexes in the solid state at 298 K.

Free Cu[Tl(SCN)₂]₂ shows a broad band centered at 16,390 cm⁻¹ indicating a square planar geometry, similar to $[Cu(NH_3)_4]^{2+}$ (16660 cm⁻¹) [13]. All other complexes in this study show two bands in the ranges 13,790–15,870 cm⁻¹ and 10,640–11,560 cm⁻¹, assigned to ${}^{2}B_{1g} \rightarrow {}^{2}A_{1g}$ and $\rightarrow {}^{2}B_{2g}$, transitions, suggesting a tetragonally distorted octahedral geometry [13] (table 3).

4.2. ESR spectra

ESR spectra of powdered samples of the complexes with ainh, ash, aah, phainh and phash exhibit an axial signal with two g values at 298 K (figure 1). The axial signals were analyzed by the procedure given by Hathaway and Billing [14]. The g_{\parallel} and g_{\perp} values (table 4) are >2.04, consistent with copper(II) in axial symmetry with all the principle axes aligned parallel. These g values indicate an elongated tetragonally distorted octahedral stereochemistry. The G factor defined as $G = (g_{\parallel} - 2)/(g_{\perp} - 2)]$, in the range 4.8164–6.7885, suggests that the local tetragonal axes are only slightly misaligned and the exchange interactions between copper(II) centers are negligible in the solid state [15]. Cu[Tl(SCN)₂]₂.phash shows a well defined hyperfine structure of four lines due to coupling of the electron with the nuclear spin (I = 3/2) of the copper atom. The g_{av} and A_{av} values were calculated using the equations $g_{av} = (g_{\parallel} + 2g_{\perp})/3$; $A_{av} = (A_{\parallel} + 2A_{\perp})/3$. However, the observation that $g_{\parallel} > g_{\perp} > g_e$ shows that the unpaired electron is in the $d_{x^2-v^2}$ orbital of the copper(II) [16, 17].

Figure 2. Representative structures of the complexes.

4.3. IR spectra

The ligands, abh, ainh, ash, aah, phabh, phainh, phash and phaah show broad bands in the region $3150-3550 \text{ cm}^{-1}$ due to $\nu \text{NH} + \nu \text{OH}$. In the metal complexes, these bands either occur nearly at the same positions as in the parent ligands or shifted to higher frequency suggesting the non-involvement of -NH in bonding [18].

In the ligands, the ν (C=O) band occurs between 1640 and 1665 cm⁻¹ and is shifted to lower frequency by 13–22 cm⁻¹ in their complexes (table 5) suggesting coordination of >C=O group to the metal ion in all the complexes [19]. Similarly, amide II bands also appear to be shifted considerably to lower frequency (10–15 cm⁻¹) compared to the parent ligand bands and a shift to higher frequency (5–15 cm⁻¹) in the amide III bands in all the complexes, further supports coordination through the >C=O group.

The $\nu(C=N)$ in the region 1610–1633 cm⁻¹ in the spectra of the ligands shifted to lower frequency by 10–28 cm⁻¹ in the metal complexes suggesting coordination through the azomethine [20]. $\nu(N-N)$ observed between 975 and 990 cm⁻¹ in the ligands shifts to higher frequency by 15–25 cm⁻¹ in the complexes, indicating coordination of one nitrogen of the N–N group [21].

In the thiocyanate complexes, $\nu(CN)$ and $\nu(CS)$ are diagnostic of the nature of SCN bonding [7]. Splitting of $\nu(C=N)$ bands into two or three components in reveals the presence of differently bonded SCN groups [18]. In the present study, all the complexes show strong bands in the ranges 2150–2162 cm⁻¹ and 2050–2096 cm⁻¹ assigned to $\nu(CN)$ of a bidentate, bridged SCN. The $\nu(CS)$ modes at 740–764 cm⁻¹ also support this bonding [18].

On the basis of above studies polymeric structures of the Lewis acid and the complexes are proposed (figure 2).

5. Thermal studies (TGA and DTA)

Thermal studies of Cu[Tl(SCN)₂]₂ · ainh show the complex is fairly stable to 182°C. Above this temperature it starts decomposition by an endothermic process and the weight of the residue up to 245°C corresponds to Cu(SCN)₂ · ainh + Tl₂S. The bonded organic ligand starts gradual decomposition between 245 to 460°C and the weight of residue at 460°C corresponds to Cu(SCN)₂ + Tl₂S. The DTA curves show significant heat liberation as a result of ligand decomposition [22] between 245–460°C. The complex shows further weight loss in the temperature range 460–750°C and the final residue at 750°C corresponds to CuS + Tl₂S. The proposed decomposition scheme is given in table 6.

5.1. X-ray diffraction studies

All the complexes are fine powdery solids. X-ray powder diffraction method provides a way of investigating, the crystallography of a crystal in powder form. The diffraction patterns for Cu[Tl(SCN)₂]₂ · ainh and Cu[Tl(SCN)₂]₂ · phash complexes were recorded and d-spacings were calculated from the diffraction lines (table 7). The patterns observed for these complexes have been indexed by Ito's method [23] and the lattice constants (*a*, *b*, *c*) were calculated as:

Cu[Tl(SCN)₂]₂ · ainh
$$a = 4.74$$
, $b = 4.54$ and $c = 4.14$ Å
Cu[Tl(SCN)₂]₂ · phash $a = 5.02$, $b = 4.78$ and $c = 4.56$ Å

These lattice constants indicate orthorhombic crystal lattice for both complexes.

5.2. Antifungal activity

From the experimental data (table 8a), it has been observed that the ligands as well as their complexes show antifungal activity against *Rizoctonia* sp., and *Stemphylium* sp. at 0.5, 1.0 and 1.5 mg mL^{-1} concentration [24]. The effect is susceptible to the concentration. Metal complexes show better activity than Cu[Tl(SCN)₂]₂ and parent ligands [25]. DMSO control has little activity. The antifungal experimental results of the compounds were compared against DMSO as the control and are expressed as percentage inhibition versus control. Ligand phainh shows the highest activity (90%) among all the ligands at 1.5 mg mL^{-1} against both the fungi. Similarly the Cu[Tl(SCN)₂]₂ phainh complex also show the highest activity (99%) against both fungi at 1.5 mg mL^{-1} concentration.

		%	Inhibition of	spore germina	tion	
Compounds	Rizoc	tonia sp. (mg	nL^{-1})	Stemp	<i>hylium</i> sp. (mg	mL^{-1})
	0.5	1.0	1.5	0.5	1.0	1.5
Abh	46	64	79	68	80	89
Ainh	60	74	85	67	73	85
Ash	62	69	79	58	64	69
Aah	39	67	74	72	84	86
Phabh	44	55	78	61	68	74
Phainh	76	82	90	71	79	90
Phash	67	71	82	75	80	84
Phaah	33	61	65	57	65	75
Cu[Tl(SCN)2]2	70	84	90	68	72	80
Cu[Tl(SCN) ₂] ₂ · abh	86	92	94	80	86	90
Cu[Tl(SCN) ₂] ₂ · ainh	90	98	99	73	78	88
Cu[Tl(SCN) ₂] ₂ · ash	94	96	97	73	79	91
Cu[Tl(SCN) ₂] ₂ · aah	86	96	97	82	86	93
Cu[Tl(SCN) ₂] ₂ · phabh	94	96	98	67	73	95
Cu[Tl(SCN)2]2 · phainh	96	98	99	78	95	99
Cu[Tl(SCN) ₂] ₂ · phash	92	96	98	80	84	88
Cu[Tl(SCN)2]2 · phaah	88	91	97	68	78	88

Table 8(a). Antifungal activity of ligands and their complexes.

The antifungal activity of the complexes varies in the following order for ligands:

For *Rizoctonia* sp.

phainh > abh = phash > ash = aah = phaah > abh.

For Stemphylium sp.

phainh > abh > phash = phaah > aah = ash > ainh > phabh.

From the data it has been observed that these complexes are more effective against *Rizoctonia sp.* compared to *Stemphylium* sp.

5.3. Antibacterial activity

The metal complexes, Lewis acid, ligands, standard drug Ampicillin and DMSO solvent control were screened separately for their antibacterial activity against *Clostridium* sp. (Gram +ve) and *Pseudomonas* sp. (Gram -ve). The activity increases as the concentration of the compounds increases [26]. Ainh is the most active ligand. The complexes are more active than the Lewis acid and parent ligands. The antibacterial activity of the complexes has been compared with the activity of a common standard antibiotic Ampiciline and % Activity Index for the complexes has been calculated. The antibacterial results suggest that the ligands and their complexes (table 8b) show moderate activity against both the bacteria [27, 28] as compared to Ampicillin. Cu[Tl(SCN)₂]₂·phainh shows the highest antibacterial activity (% Activity Index = 62.5) against *Clostridium* sp. at 2 mg mL^{-1} , but Cu[Tl(SCN)₂]₂·ainh and Cu[Tl(SCN)₂]₂·phabh show highest activity (% Activity index = 50) against *Pseudomonas* sp. at 2 mg mL^{-1} concentration. Complexes are more effective against *Clostridium* sp. than *Pseudomonas* sp.

ir complexes.	
of ligands and the	
Antibacterial activity c	
Table 8(b).	

		Clostridium sp.	(mgmL^{-1})			Pseudomonas sp.	(mgmL^{-1})	
	Diameter o zone (i	f inhibition n mm)	% Activi	ty index	Diameter of zone (ii	f inhibition n mm)	% Activi	ty index
Compounds	1.0	2.0	1.0	2.0	1.0	2.0	1.0	2.0
Abh	2	4	14.3	25.0	2	3	11.1	16.7
Ainh	4	9	28.6	37.5	3	9	16.7	33.3
Ash	7	3	14.3	18.8	2	4	11.1	22.2
Aah	4	5	28.6	31.2	5	9	27.8	33.3
Phabh	3	4	21.4	25.0	2	2	11.1	11.1
Phainh	2	4	14.3	25.0	2	2	11.1	11.1
Phash	2	2	14.3	12.5	2	3	11.1	16.7
Phaah	3	3	21.4	18.8	3	4	16.7	22.2
$Cu[T](SCN)_2]_2$	3	4	21.4	25.0	4	5	22.2	27.8
$Cu[T](SCN)_2]_2 \cdot abh$	3	9	21.4	37.5	4	5	22.2	27.8
Cu[Tl(SCN) ₂] ₂ · ainh	7	8	50.0	50.0	8	6	44.4	50.0
Cu[Tl(SCN) ₂] ₂ · ash	4	5	28.6	31.3	5	9	27.8	33.3
Cu[Tl(SCN) ₂] ₂ · aah	5	7	35.7	43.8	4	7	22.2	38.9
Cu[Tl(SCN)2]2 · phabh	9	8	42.9	50.0	7	6	38.9	50.0
Cu[Tl(SCN) ₂] ₂ · phainh	7	10	50.0	62.5	4	8	22.2	44.4
Cu[Tl(SCN) ₂] ₂ · phash	4	9	28.6	37.5	5	8	27.8	44.4
Cu[Tl(SCN) ₂] ₂ · phaah	9	7	42.9	43.8	7	8	38.9	44.4
Ampicillin (standard)	14	16	100.0	100.0	18	18	100.0	100.0

Tetrathiocyanato dithallate

2779

Acknowledgements

The authors thank the Director, Institute of Engineering and Technology, C.S.J.M. University Kanpur for providing laboratory facilities, the Head, Chemistry Department, Indian Institute and Technology, Kanpur for recording electronic, IR, ESR spectra, thermal and X-ray diffraction studies. The authors also thank to Dr Nand Lal, Institute of Life Sciences, CSJM University, Kanpur for his help in antimicrobial screening.

References

- [1] R.H. Adamson, G.P. Canellos, S.M. Sieber. Cancer Chemother. Rep., Part I 59, 599 (1975).
- [2] O. Renn, H. Preut, B. Lippert. Inorg. Chim. Acta, 188, 133 (1991).
- [3] P.P. Singh, R.C. Verma, N.Singh. J. Less Common Metals, 70, 155 (1980).
- [4] A.G. Lee. J. Chem. Soc A., 2008 (1971).
- [5] A.V. Ivanov, O.A. Bredyuk, A.V. Gerasimenko, I.A. Lutsenko, O.N. Antzutkin, W. Forsling. *Russ. J. Coord. Chem.*, **32**, 339 (2006).
- [6] K.K. Narang, J.P. Pandey, V.P. Singh. Polyhedron, 13, 529 (1994).
- [7] K.K. Narang, J.P. Pandey. Synth. React. Inorg. Met.-Org. Chem., 24, 73 (1994).
- [8] A.I. Vogel. Vogel's Text Book of Quantitative Chemical Analysis, 5th Edn, Longman, Amsterdam (1989).
- [9] R.L. Dutta and A. Syamal, *Elements of Magnetochemistry*, 2nd Edn, Affiliated East-West Press Pvt. Ltd., New Delhi (1993).
- [10] W.J. Geary. Coord. Chem. Rev., 7, 81 (1971).
- [11] F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann. Advanced Inorganic Chemistry, 6th Edn, John Wiley & Sons Inc., New York (2003).
- [12] N.N. Greenwood, A. Earnshaid. Chemistry of the Elements, 1st Edn, p. 1386, Pergmon Press, Great Britain (1984).
- [13] A.B.P. Lever. Inorganic Electronic Spectroscopy, 2nd Edn, Elsevier, Amsterdam (1984).
- [14] B.J. Hathaway, D.E. Billing. Coord. Chem. Rev., 5, 143 (1970).
- [15] K.K. Narang, V.P. Singh. Transition Met. Chem., 21, 507 (1996).
- [16] P. Bindu, M.R.P. Kurup, T.R. Satyakeerty. Polyhedron, 18, 321 (1998).
- [17] O.I. Singh, M. Mohapatra, R.M. Kadam. Polyhedron, 24, 909 (2005).
- [18] K. Nakamoto. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th Edn, John Wiley & Sons Inc., New York (1986).
- [19] S.A. Sharma, H. Omara. Spectroscopy Lett., 34, 49 (2001).
- [20] K.K. Narang, V.P. Singh. Transition Met. Chem., 18, 287 (1993).
- [21] Z.H. Chohan, M.A. Farooq, A. Scozzafava, C.T. Supuran. J. Enz. Med. Chem., 17, 1 (2002).
- [22] S.M. Abu-El-Wafa, K.A.R. Salib, G. El-Inany, T.M. Ismail. Synth. React. Inorg. Met.-Org. Chem., 20, 1343 (1990).
- [23] V.P. Singh, P. Gupta. J. Coord. Chem., 59, 1483 (2006).
- [24] K.K. Narang, V.P. Singh, S.K. Singh, G.D. Mishra. Synth. React. Inorg. Met.-Org. Chem., 26, 191 (1996).
- [25] R. Nagar. J. Inorg. Biochem., 40, 349 (1990).
- [26] Z.H. Abd El-Wahab, M.R. El-Sarrag. Spectrochim Acta, 60A, 271 (2004).
- [27] P.K. Panchal, H.M. Parekh, M.N. Patel. Toxico. Enviro. Chem., 87, 313 (2005).
- [28] K. Deepa, K.K. Aravindakshan. Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 35, 409 (2005).